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The robust character of the Standard Model is eonfn'med, Examination of its 
geometrical basis in three equivalent internal symmetry spaces--the unitary 
plane C 2, the quaternion space Q, and the real space R 4 -  as well as the real 
space R 3 uncovers mathematical properties that predict the physical properties 
of leptons and quarks. The finite rotational subgroups of the gauge group 
SU(2)L x U(1)r generate exactly three lepton families and four quark families 
and reveal how quarks and leptons are related. Among the physical properties 
explained are the mass ratios of the six leptons and eight quarks, the origin of 
the left-handed preference by the weak interaction, the geometrical source of 
color symmetry, and the zero neutrino masses. The (u, d) and (c, s) quark 
families team together to satisfy the triangle anomaly cancellation with the 
electron family, while the other families pair one-to-one for cancellation. The 
spontaneously broken symmetry is discrete and needs no Higgs mechanism. 
Predictions include all massless neutrinos, the top quark at 160 GeV/c 2, the b" 
quark at 80 GeV/c 2, and the t' quark at 2600 GeV/c 2. 

1. I N T R O D U C T I O N  

For  at least 20 years the successful predictions of  the minimal Stan- 
dard Model (Glashow, 1961; Weinberg, 1967; Salam, 1968; Kim, 1990; 
Langacker,  1989) of  leptons and quarks have been truly remarkable.  Based 
upon the direct product  gauge group S U ( 3 ) c  x SU(2)L x U(1)r ,  the lep- 
tons and quarks occupy weak isospin doublet  states, the quarks display 
three values of  color charge, and the 12 gauge bosons have the correct 
physical properties. The theory has been resilient to at tack from all sides, 
rejecting at tempts (Renton,  1990) to embed it in a larger gauge group such 
as SU(5) or  to extricate a component  structure (Rosner  and Worah,  1992). 
In all cases, the empirical evidence places severe restrictions against the 
likelihood that  any of  these proposed schemes will prove successful. Yet, in 
spite o f  all the successes of  the minimal Standard Model, there exists an 
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uneasiness about a theory that cannot predict the masses of its fundamental 
particles nor dictate the reason for having at least three families of leptons 
and quarks. Too many unanswered questions remain for the theory to be 
considered complete as presently understood. 

Under these circumstances, I am proposing a different approach 
(Potter, 1989) which is aimed at achieving a better understanding of the 
geometrical properties of the Standard Model when its gauge group operates 
in the unitary plane. The approach reveals some remarkable mathematical 
properties which have been ignored for over 20 years, properties which 
resolve many of the pertinent physics questions about leptons and quarks, 
including the mass spectrum, the family problem, the origin of color 
symmetry, the fundamental difference between leptons and quarks, and the 
reason for a left-handed preference by the weak interaction. One discovers 
that the Standard Model is such a good first approximation to the ultimate 
truth about leptons and quarks that the only major modification required 
to improve significantly our understanding is to assign the lepton and quark 
weak isospin families tofinite rotational subgroups of the electroweak gauge 
group SU(2)L x U(1)r of the theory. By using this geometrical approach, 
one realizes that the unitary plane C 2 of operation of the electroweak gauge 
group must also be treated in terms of its equivalent spaces, the quaternion 
space Q and the 4-dimensional real space R 4. Furthermore, one finds that 
the 3-dimensional real subspace R 3 is important for understanding the whole 
fermion family hierarchy within the framework of the Standard Model. 

A careful accounting of the gauge group operating in these spaces 
leads to the grand prediction of exactly three lepton families and four 
quark families, each family corresponding to a finite rotational subgroup of 
SU(2)L x U( l)r  in R 3 and R 4, respectively. This grand prediction does not 
disagree with the empirical results (Abrams et al., 1989; ALEPH Collabo- 
ration, 1989; OPAN Collaboration, 1989; DELPHI Collaboration, 1989) 
that dictate three lepton families with light neutrinos if one recalls that 
these results do not actually limit the number of quark families. In 
addition, the triangle anomalies can be shown to cancel still, even though 
there is a mismatch of family numbers. Some predicted numerical quanti- 
ties are the quark masses, including the top quark at about 160 GeV/c 2, the 
fourth family b' quark at about 80 GeV/c z, and the t' quark at about 
2600 GeV/c 2. The existence of the b' quark becomes the acid test for this 
modification of the minimal Standard Model because it represents a fourth 
quark family, and its predicted mass value at about 80 GeV/c a means that 
it should have been produced at Fermilab (Agrawal and Hou, 1992; 
Agrawal, Ellis, and Hou, 1990). 

I call attention first to the mismatch of three lepton families to four 
quark families because one suspects that the triangle anomalies (Adler, 
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1969; Bell and Jackiw, 1967) will not cancel as they do when the number of 
quark families matches the number of lepton families. Indeed, this objec- 
tion is an important concern, but it can be resolved, as I show in Section 
2. The transformation properties of the particle states in the unitary plane 
are discussed in Sections 3-7 where the left-handed preference of the weak 
interaction is explained, the origin of SU(3) color is proposed, the differ- 
ences between quarks and leptons are examined, and the argument for zero 
neutrino masses is given. Properties of the finite rotation groups are 
introduced and exploited in Sections 8-10, in which their invariant polyno- 
mial bases are discussed, mass ratios for the leptons are shown to arise 
from 3D rotational group invariants, the 4D rotational groups are related 
to the 3D rotational groups and to quarks, and the mass hierarchy for 
quarks is resolved. In Section 11 a new expression for electric charge is 
introduced, and in Section 12 the symmetry breaking of the gauge group is 
proposed to be discrete with no need for Higgs bosons. Some final 
comments in Section 13 recap the major ideas and consequences. 

2. THE TRIANGLE ANOMALY CANCELLATION 

The modification of the minimal Standard Model to be introduced in 
later sections predicts four quark families and three lepton families, a 
mismatch of family numbers that seems to create a problem with the 
cancellation of the triangle anomalies. To allay these concerns, I choose to 
discuss this conflict first to illustrate that the standard cancellation proce- 
dure remains successful when the first two quark families are paired with 
the electron family. The application to the complete quark family hierarchy 
will be discussed at the end of this section. 

The triangle anomaly arises from graphs of the kind shown in Fig. 1. 
Diagrams (a) and (c) involve the first family of quarks only; diagrams (b) 
and (d) are the corresponding diagrams in which the charm and strange 
quarks of the second family substitute between vertices b and c. There are 
ten generic graphs in total: the four in Fig. 1 for the first quark family, the 
four analogous graphs for the second quark family, and the two graphs for 
the electron family analogous to (a) and (c). There are many processes 
which have triangle graphs involving the weak interaction, but the same 
type of cancellations occur in every example (Ryder, 1985), so one can use 
the representative diagrams shown. These processes involve high-order 
diagrams which have very small contributions to the overall amplitude, but 
they must cancel exactly in order to preserve the renormalizable theory of 
the weak interaction. 

By following the standard calculation procedure, the important expres- 
sion for the left-handed fermions interacting via the Z ~ and the W's at the 
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Fig. 1. 

cos  
W "  

(a) d S  

. . W + 
Cos o c 

-s~ o= 

(b) d S ..... W "  

Z o 

~ W  + 
- sin % 

.',,< 

cos  0 e % 
.............. W + ~ -  W + 

W "  W "  
Cos o c sin o e 

Triangle diagrams for Z ~ -.+ W + W -  via (a) u-quark exchange, (b) c-quark exchange, 
(c) d-quark exchange, and (d) s-quark exchange, for the (u, d) quark family. 

three triangle diagram vertices becomes 

Tr(I3 + sin20w Q){M~, Mc } = 0 (I) 

where the first factor (13 + sin20w Q) is the contribution from the Z ~ 
coupling at vertex a and the second factor involves the vertex factors M~ 
and Me. The fermion weak isospin is 13, 0~ is the Weinberg angle, and Q 
is the electric charge of the left-handed ferrnion. The vertex factors 
M = gI+ or M = gI_ depend upon the W boson at vertex b or c via the 
weak isospin raising and lowering operators I+ and I_ and the weak 
coupling constant g. One should multiply the standard coupling constant g 
by the Cabibbo factor for the interactions of the (u, d) and (c, s) families at 
the vertices b and c involving the W boson, so I will rewrite g as g" to 
indicate the inclusion of the Cabibbo factors. One takes g" = g for leptons, 

" d" g' = g cos 0, at a u, vertex, and g'  = - g  sin 0c or + g  sin 0c at a "c, d" 
or u, vertex. Since (I+, I_ } 1 and the Tr 13 = 0 for each family, the 
condition in equation (1) reduces to 

Qig'bg~. = 0 (2) 
i 

with the subscripts b and c again identifying the triangle vertices. 
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By first ignoring the Cabibbo factors at the vertices, one can reproduce 
the standard result ~i  Q,. = 0 obtained when the family pairing is normal, 
i.e., electron family paired to the up/down family as (re, e) ~-~ (u, d): 

ai  = av + ar + 3(a~ + ad) = 0 + ( - 1) + 3(2/3 - 1/3) = 0 (3) 
i 

When the Cabibbo factors are included in the vertex terms for the first 
quark family (u, d), then the cancellation will not occur because the factor 
cos20~ arising from diagrams (a) and (c) in Fig. I multiplies the quark 
contribution term in equation (3). Thus the normal family pairing scheme 
in the Standard Model does not produce the required cancellation! 

The modified minimal Standard Model introduces a different family 
pairing scheme than the one traditionally proposed. The pairings dictated 
by the finite rotational group properties are the seemingly bizarre arrange- 
ment with the first quark family left unpaired to its own lepton family: 

leptons quarks 

(u, d) 
(v,, e) ~ (c, s) 
(v~, p) ~-~ (t, b) 
(v~,z) ~ ( t ' ,b  e) 

The unpaired (u, d) quark family looks odd and ruins the anticipated 
one-to-one matching, but this bizarre scheme of relationships between 
lepton and quark families may very well be the correct one because the 
scheme leads to exact cancellation. If one combines the first two quark 
families with the electron family in order to evaluate equation (2) for all ten 
graphs, the (u, d) charge contributions from (a) and (c) types multiplied by 
cos20,, add to the (c, s) charge contributions from (b) and (d) types 
multiplied by sin20c, so that every piece contributes to make the sum add 
to zero exactly: 

Qv + Qe + 3(Qc + Qs) + 3(Q~ + Qd) 

= 0 + ( -- 1) + 3(2/3 - 1/3)[sin20, + cos20,] = 0 (4) 

Remarkably, it is the mixing of the (u, d) family and the (c, s) family in this 
bizarre pairing scheme with the electron family that is required to achieve 
the cancellation. If there were no mixing of the (u, d) and (c, s) quark 
families, there would be no cancellation of the triangle anomalies for the 
electron family. 

Of course, in the modified version, the two remaining sets of paired 
families of leptons and quarks will cancel in the usual one-to-one manner, 
i.e., (vv,/z) with (t, b) and (v~, z) with (t', b'), if there is no further mixing 
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between quark families. If further mixing does exist so that the Cabibbo- 
Kobayashi-Maskawa matrix is peppered with nonzero off-diagonal terms 
beyond the Cabibbo terms, then all the detailed couplings at the vertices of 
the triangle diagrams would need to be calculated to ensure cancellation. 
Fortunately, examination of the geometrical basis (in a later section) 
uncovers prospects for mixing between the first two quark groups only. 
Therefore, in the modified minimal Standard Model with four quark 
families and three lepton families the triangle anomalies cancel exactly. 

3. PARTICLE STATES IN THE UNITARY PLANE 

I am going to assume that the mathematical properties of the unitary 
plane dictate the physical properties of the fundamental fermions. Evalua- 
tions of this assumption will be made at the appropriate places. One begins 
with the minimal Standard Model which assigns the two fundamental 
fermions in each lepton family and in each quark family to weak isospin 
SU(2)L doublets. These particle states correspond to the two complex basis 
spinors u and v which span the two-dimensional complex space (u, v[, i.e., 
the unitary plane C 2, in this two-dimensional representation of the gauge 
group. The corresponding two fundamental antifermions are assigned to 
the two basis spinors - u *  and v* which span the complex conjugate space 
(v*, - u *  I. An important property of the electroweak direct product group 
SU(2)L x U(1)r, where the Y refers to weak hypercharge, is that the two 
spinor spaces (u, v[ and ( v * , - u * [  are inequivalent. [This inequivalence 
condition is in sharp contrast to their equivalence for the Lie group SU(2) 
alone.] These two inequivalent spaces (u, v I and (v*, -u*[  allow the four 
distinct particle states to be defined, the two fermion states in (u, v I and the 
two corresponding antifermion states in (v*, -u*l .  In the electron family, 
for example, the lepton states are the electron neutrino and the electron, 
while the antilepton states are the positron and the electron antineutrino. 
Here I emphasize that the neutrino and antineutrino are taken to be 
distinct Dirac particles with zero mass, and I give the arguments in a later 
section to support this assertion. 

4. WEAK ISOSPIN LEFT-RIGHT DICHOTOMY 

The weak interaction prefers the left-handed weak isospin states. 
Indeed, numerous empirical observations (Langacker, 1989, 1992) verify 
that only the left-handed fermion doublets participate in the weak interac- 
tions mediated by the W and Z ~ bosons. The right-handed fermions act as 
SU(2)L singlets and do not interact with the W or the Z ~ but they 
participate in the electromagnetic interaction. Moreover, the experiments 
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have revealed that the direct product group SU(2)L x U( l ) r  is the weak 
isospin-hypercharge group for leptons and quarks or, at the very least, is an 
excellent approximation to the true group. 

What type of spinor dichotomy could be the source of the left-handed 
preference? Or, expressed another way, why left-handed doublets and 
right-handed singlets? There are known to be two types of spinor di- 
chotomy: (1) the dotted and undotted spinors that behave differently under 
the action of the Lorentz transformations of the Poincar6 group, and (2) 
the spinors in the unitary plane of the internal symmetry group behaving 
differently under general unitary transformations in the plane itself. Al- 
though the former dichotomy is well known in physics, the latter was 
elucidated (Crowe, 1961; Coxeter, 1974) for the first time in the early 1960s 
and seems to have remained unused in particle physics. 

Recall that the first type of left-right spinor dichotomy arises by 
considering the behavior of spinors under the action of the Lorentz 
transformation. The familiar dotted and undotted spinors appear and they 
correspond to the left-handed and right-handed spinor helicity states, 
respectively. This specific left-right dichotomy is independent of the inter- 
action type because it arises from kinematic considerations alone and 
cannot be the ultimate origin of the left-handed preference of the weak 
interaction. The Lorentz transformation simply separates out the left- 
handed and the right-handed helicity states from the total collection which 
must already contain both kinds. 

The origin of the weak isospin preference actually lies in the second 
type of dichotomy behavior. The particle states, i.e., the basis spinors u and 
v, when acted upon by the weak bosons to transform the initial weak 
isospin state into the final weak isospin state, undergo left and right screw 
transformations in the unitary plane. In order to appreciate these transfor- 
mations, one can follow standard mathematical methods (Crowe, 1961; 
DuVal, 1964; Coxeter, 1974). The arbitrary point (u, v) in the unitary plane 
C 2 is transformed by the general SU(2) matrix into (u', v') via 

(u', v') = (u, \ - ~ c *  ~a* (5) 

which identifies u" = e(au - c 'v)  and v" = ~(cu + a'v).  This transformation 
preserves uu*+ w*,  while the complex numbers e, a, and c obey ~*  = 1, 
aa* + cc = 1, and e 2 = exp(iqg). 

At this point, one could simply factor out the e from the matrix and 
let it operate as a phase factor on the left side of (u, v) in equation (5), but 
better insight is gained by expressing this general unitary transformation in 
terms of quaternions. The point (u, v) is the quaternion 

X = u + vj (6) 
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with j the unit imaginary just like i. Quaternions do not commute, so 
i] = - j i ,  etc. The product of two quaternions produces 

(u + vj)(a + cj) = au - c*v + (cu + a*v)j (7) 

which looks similar to the result of the transformation to the u' and v' in 
equation (5). The general unitary transformation is then expressed via 
quaternions as the product 

X' = eX~ (8) 

where x = a + cj, a quaternion of norm one, and ~ is a unit quaternion 
also. 

By comparison to the matrix format, x is the SU(2) matrix and the 
general transformation becomes the expected result 

(u' ,  v ')  = e(u, v) - c *  a* (9) 

which must be interpreted in terms of quaternions in order to realize the 
connection to doublets and singlets. First, one needs to know that the 
left-multiplication by the unit quaternion e is mathematically a right screw 
transformation that will be selected out into a right-handed helicity state 
when the Poincar6 transformation is applied. The right-multiplication by 
the unit quaternion r is the lef t  screw transformation that will be selected 
out as a left-handed helicity state. For reference purposes, in the complex 
conjugate unitary space <v* , -u*[  the quaternion x* is necessary and 
produces a right screw transformation, etc. 

Where do the doublet and singlets originates? The left-handed doublet 
behavior arises because the left screw x acts on (u, v) to produce 
(au - c ' v ,  eu + a ' v ) ,  an entity that behaves as a doublet. The singlet arises 
because the right screw (unit quaternion) e acts on (u, v) to produce (eu, ~), 
i.e., u and v transform as singlets simply multiplied by the unit quantity e. 
Thus, transformations in the unitary plane involve only left-handed dou- 
blets and right-handed singlets. There are no exceptions! One can verify 
that the handedness correlation reverses in the conjugate spinor space. 

The two types of left-right dichotomy listed earlier are related even 
though the first type is the result of a space-time transformation and the 
second type is the result of a transformation in the unitary plane of the 
internal symmetry space. The internal-space transformation tells us that the 
spinors are divided into two types by the quaternion screw transformations, 
and the external space-time transformation simply separates these two 
types into left- and right-handed helicity states. 

The physical consequences of the general unitary transformation are 
enormous. For example, if one is interested in left-right symmetric models 
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based upon SU(2)L x SU(2)R weak isospin symmetry, the analysis for the 
general transformation proceeds in exactly the same manner as the one 
above because the original unitary space for SU(2) is still the space for the 
left-right direct product group. The immediate consequence is left-handed 
doublets and right-handed singlets because one cannot force the mathemat- 
ical properties to produce a true left-right symmetry for the general 
transformation in the unitary plane. Consequently, the left-right symmet- 
ric models exist in name only, do not produce true left-right symmetry 
mathematically, and should not exist physically in nature. Proponents of 
these left-right models propose a WR, a "right-handed" W, which they can 
argue to be very massive in order to have escaped experimental detection. 
But the argument discussed above eliminates a WR at any mass value. 

The WR is very important because its existence would verify the 
presence of a right-handed weak current (RHC) and indicate that a 
left-right symmetric model must be taken seriously. However, the WR has 
an even more important role, for its existence would signify that the 
physical properties of the weak eigenstates of the Standard Model are not 
dictated by the mathematical properties of SU(2) • U(1)r in the unitary 
plane. In contrast, the absence of the WR and its RHC would eliminate 
left-right symmetric models and would support the assumption that the 
mathematical properties of the unitary plane C 2 dictate the physical 
properties of the fundamental fermions. 

What is the evidence with regard to a WR ? No RHC has been found, 
and lower limits on the mass of the WR have been given. The recent 
searches (Carnoy et al., 1990; Dubbers et al., 1990; Jodido et al., 1986; 
Stoker et al., 1985) for right-handed weak currents involving the second 
weak boson W2 as predicted by the left-right symmetric model when 
applied to the K + and # + decays has put a constraint on the lower mass 
limit of the W2 >> 653 GeV at the Cabibbo angle value for the right-handed 
sector defined by Isin0~l= 1. W2 is predominantly right handed 
(W2 = WL sin ~ + WR cos ~, 1~[ ~ 1, and WL and WR are the boson weak 
eigenstates and ~ is the mixing angle) and has been proposed to possess a 
much heavier mass than does the predominantly left-handed boson W~ 
(Wi = WL COS ~ -- WR sin 0. Other experimental searches involving a num- 
ber of processes, including muon-decay positron asymmetry, have been 
done with high precision and they establish a lower limit mass value for the 
W2 > 482 GeV at ~ = 0. 

In summary, for the case of weak isospin in the unitary plane, it 
appears that nature had no choice but to divide the weak isospin states into 
left-handed doublets and right-handed singlets. The physical consequences 
of this dichotomy first showed up in the 1950s as the violation of parity for 
the weak interaction because only left-handed fermions participated. With 
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the mathematical elimination of a W R (and with no empirical evidence for 
a WR), I will continue to assume that the physical properties of the 
fundamental fermions are dictated by the mathematical ones. Knowing 
that the doublet-singlet dichotomy simply expresses the general unitary 
transformation in C 2, one can make a few general predictions: 

(a) All fermion weak isospin states will act as left-handed doublets 
and right-handed singlets. 

(b) One can eliminate a very massive right-handed W boson which 
would interact with the weak isospin states in the unitary plane. 

(c) There will be no heavy right-handed partners, too heavy to be 
observed in the relevant experiments, for the right-handed 
fermions to form a right-handed SU(2) doublet. 

(d) There must exist the v, and the top quark in order to form the 
left-handed weak isospin doublets. 

In this section I have shown that the mathematical properties of the 
general transformation in the unitary plane dictate no other possibility than 
left-handed doublets and right-handed singlets. As a consequence, there is 
no need to label explicitly the left-handedness of the electroweak group as 
SU(2)L x U(1)r. In addition, the resolution of this one problem suggests 
that other enigmas related to the Standard Model may be amenable by a 
better understanding of the mathematical properties of its gauge group 
operating in the unitary plane. The ultimate goal would be to explain all 
the physical properties of the leptons and quarks as arising from the 
mathematical ones. 

5. POSSIBLE ORIGIN OF SU(3) COLOR 

One more aspect of the minimal Standard Model needs consideration 
in order to complete the framework for a discussion of the finite rotational 
subgroups of the direct product gauge group SU(3)c x SU(2)L x U(1)r. 
Color symmetry associated with the Lie group SU(3)r was proposed to 
preserve the antisymmetric wavefunctions for fermions, but its ultimate 
origin has never been identified. I propose that color symmetry simply 
represents the partitioning of the 4D real space into its three sets of 
equivalent 4D rotation-plane pairs. This identification, if correct, then 
dictates an inherent difference between leptons and quarks because the 
quark states can be shown to occupy the whole 4D space (in order to have 
color charge) while the lepton states span the 3D subspace only (in order 
to not have color charge). 

The key mathematical ideas utilize the relationships among four vector 
spaces. The unitary plane C 2 has intimate connections to three other 
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spaces: the Euclidean spaces R 4 and R 3 and the quaternion space Q. The 
spaces R 4 and Q are equivalent spaces to C 2, while R 3 is a subspace. 
Rotations defined in R 4 and Q have corresponding rotations defined in C 2, 
and rotations in C: are 2-to-1 homomorphic to rotations in R 3. One needs 
all these relationships to understand how the particle states (u  I and (v I 
behave. 

The connection between the point (u, v) in the unitary plane C 2 to the 
quaternion q = u + vj in Q has already helped explain the origin of the 
left-handed preference for the weak interaction. One can now expand the 
list of  spaces (DuVal, 1964; Coxeter, 1974) to include the four-dimensional 
space R 4 via 

q = u + v j = w  + x i +  yj + z k  (10) 

with u = w + xi and v = y + zi, where i, j, k are the unit imaginaries and 
w, x, y, z are real numbers. For  completeness, one also needs the product of 
the quaternion q with another quaternion q'  = (w', x ' ,  y ' ,  z'), 

qq = (ww" -- xx"  -- yy"  -- z z ' ,  wx" + xw"  + yz"  - z y ' ,  

w y '  -- x z '  + y w '  + z x ' ,  wz  " + x y '  - y x '  + z w ' )  (11) 

in order to work in either space, Q or R*. From the space R 4 o n e  can 
identify the familiar 3-dimensional subspace R 3, called the imaginary 
prime, defined by fixing the value of  w and allowing variation in x, y, and 
z. More generally, one could define a 3-vector about which rotations in R 3 
can occur. 

The gauge group operations in the 4-dimensional real space R 4 a r e  

represented by a 4 x 4 matrix. For  example, the SU(2) matrix defined 
in the unitary plane C 2 can be written both as the unit quaternion 
q = (w, x,  y ,  z) in Q with norm w 2 + x 2 + y2 + z 2 = 1 and as the 4-dimen- 
sional rotation matrix of  determinant unity which has the block diagonal 
form for the ordered axes set (w, x, y, z) 

cos a sin ~ 0 0 fl ] 
- s i n  ~ cos a 0 0 

0 0 cos fl sin 

0 0 - s i n f l  cos 

(12) 

One could express the a and fl in terms of  the a, a*, c, and c* of  the SU(2) 
matrix in (5) when needed. This specific 4 x 4 matrix form emphasizes that 
the 4D rotation always occurs in two orthogonal planes, here in the (wx)  

plane and in the ( y z )  plane. These planar rotations are two separate 
rotations that commute, and when a - fl = 0, the 4D rotation is the right 
screw transformation. When �9 + fl = 0, the 4D rotation is the left screw 
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transformation. These are the screw transformations referred to earlier in 
the discussion of the doublet-singlet dichotomy. 

The 3D rotation in the imaginary prime (i, j, k) can be expressed in 
terms of the left and right screw transformations also. If the quaternion 
p = (cos 0t, sin ~, 0, 0), then the right screw transformation X ~ p X  is the 
compound rotation of angle ~ in the (w, x) plane and angle 0t in the (y, z) 
plane, and the left screw transformation X ~ X p  -1 is the compound 
rotation of angle - ~  in the (w, x) plane and the angle 0~ in the (y, z) plane. 
The resultant X ~ p X p  -l  is the rotation by 2ct in the (y, z) plane, i.e., a 
rotation in the imaginary prime 3D subspace about the x axis. 

The 4D rotation matrix given above in (12) involves a pair of 
orthogonal planes in the real space R 4. Further examination of 4D 
rotations reveals the existence of three distinct pairs of orthogonal planes 
in R4: [WX, yz'], [xy, ZW], [yw, XZ]. The rotations can be expressed using any 
one of these three pairs of planes because the pairs are equivalent, which 
is just another way to state that there is a symmetry among the three 
pairs. 

I propose that this symmetry among the three pairs of planes is the 
origin of SU(3)c color symmetry for the quark states. The SU(3)-like 
properties can be mathematically checked, for one can show by multiplying 
the matrices that the Lie group associated with their symmetry is SU(3). If 
one assigns the colors red, green, and blue, respectively, to these three pairs 
of planes, two particular combinations of matrix products lead to no net 
rotation, which are, when stated in terms of color combinations: color with 
anticolor (a quark with an antiquark), and the hadron composed from 
each of the three colors (three quarks) or each of the three anticolors (three 
antiquarks). In order to verify the SU(3) behavior, one must include these 
special combinations of rotations which produce no net 4D rotation. 

In addition to verifying the SU(3) behavior, one learns also that the 
two-color combination red-green, for example, is not the anti-blue color 
state, this latter designation being used often in the literature. The anti-blue 
designation should really be reserved for the complex conjugate spinor 
space and the 4 x 4 matrix representing this 4D rotation. 

Mathematically, when this "new" color symmetry is included in the 
operations in the unitary plane, the SU(2)L x U(1)r group for the elec- 
troweak interactions is extended by the SU(3)c to become the direct 
product group S(3)c x SU(2)z. x U( l ) r  of the Standard Model. This ex- 
tension obtained by taking the direct product of groups is analogous to the 
direct product group of the square in a real plane. First consider the 
rotation group C4 of a square in the real plane and then add the mirror 
reflection group a2 to make the direct product group tr2 x C4. This direct 
product group of the square is not isomorphic to any other single group G. 
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Analogously, the direct product group S(3)c x SU(2)L x U(1)r for leptons 
and quarks also may not be isomorphic to any other group. 

If the identification of the color symmetry with the three distinct sets 
of 4D rotation planes is correct, then some insight into the similarities and 
differences between leptons and quarks can be coaxed from the mathemat- 
ical properties. In the next section the mathematical properties of the 
various spaces are exploited once more to find the most likely space for the 
leptons so that they possess no color charge yet fit into the finite subgroup 
scheme to be developed in a later section. 

6. MATHEMATICAL DIFFERENCE BETWEEN LEPTONS AND 
QUARKS 

What makes quarks different fundamentally from leptons? This ques- 
tion is equivalent to asking why quarks have baryon number B # 0 and 
leptons have B = 0. The question can be answered by examining the 
different dimensions of the real spaces required by the quarks and by the 
teptons to define their weak isospin particle states. 

The color charge of the quark states requires the whole 4D real space 
in order to have rotations occur in two orthogonal planes. Because 
experiment has confirmed that the leptons are colorless, one can conclude 
that the lepton particle states in each weak isospin family do not span all 
of the R 4 vector space, otherwise leptons would have color charge also. At 
most, the lepton states can span the subspace R 3, the imaginary prime. I 
will assume that the lepton states do span R 3 and determine the conse- 
quences. 

The color charge distinction between spaces makes quarks 4-dimen- 
sional geometrical entities and leptons 3-dimensional geometrical entities. 
Baryon number could conveniently represent the same information. In 
addition, the inability to isolate a single quark, i.e., color confinement, may 
have its origin in the 4D character of the quarks, but I have no further 
insight into this particular physical behavior of the quarks. 

Instead, I direct attention to the three equivalent internal spaces C 2, 
R 4, and Q in which vectors of norm unity and transformation matrices A 
with Idet A[=  1 are the fundamental mathematical objects. These restric- 
tions suggest the consideration of points on the appropriate unit hyper- 
sphere. A rotation in R 4 transforms an arbitrary point (w, x,y,  z) to 
another point in R 4 or, equivalently, the point on the unit hypersphere S 3 
to another point on S 3. The two basis spinors u and v corresponding to the 
particle states are points on S 3 each defined by three parameters. That is, 
each quark particle state is defined by three parameters in the internal 
symmetry space R 4. 
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In the lepton case, the spinors are confined to the subspace R 3. A 
rotation transforms the point (x, y, z) to another point in R 3 or, equiva- 
lently, the point on the sphere S 2 to another point on S 2. The two basis 
spinors u and v for leptons are restricted now to two parameters each which 
define their points on S:. 

In space-time, the connection between the mass of a particle and the 
number of degrees of freedom for its spin vector falls into two categories. 
A particle with mass must have three degrees of freedom so that its spin 
can point in any one of the three space directions in space-time. A 
zero-mass particle cannot have more than two degrees of freedom, each 
degree of freedom corresponding to one helicity state. In addition, a 
zero-mass particle could have only one degree of freedom and one helicity 
state under certain restrictions. 

Is there a direct relationship between the number of parameters needed 
to define the basis vectors in the internal symmetry space and the number 
of possible spin directions in space-time? Yes, the two quantities are equal. 
A particle state defined by three parameters on S 3 will have three degrees 
of freedom for its spin vector. A particle state defined by two parameters 
on S 2 will have two degrees of freedom for its spin vector. In terms of fer- 
mion states, therefore, the two basis spinors on S 3 would correspond to two 
massive fermion states, i.e., the quark states. One would expect also that the 
two basis spinors confined to S 2 represent two massless fermions, the lepton 
states. Further discussion of the lepton states is reserved for the next section. 

I have proposed that the two quark states in each quark family span 
the whole space R 4 and two lepton states in each lepton family span the 
subspace R 3 in order to agree with the color charge assignments. As a 
consequence, baryon number becomes a bookkeeping quantity for 4D 
entities called quarks and antiquarks. Because baryon number is thought to 
be a conserved quantum number, an associated symmetry operation is 
expected, but its identification remains obscure. One test of baryon number 
conservation is proton decay, which has been predicted by several models. 
If a proton does decay, then baryon number conservation is violated because 
at least one of the up or down quarks in the proton must have changed into 
nonquark entities which would have B = 0. So far, there is no evidence for 
proton decay. There should be no proton decay in the modified minimal 
Standard Model because the fundamental gauge group remains as a direct 
product group so that no leptoquark-like particles appear. 

7. ZERO-MASS NEUTRINOS 

The quark and lepton assignments made in the previous section are 
very interesting because nature would have two massive quark states per 
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family and two massless lepton states per family. Certainly, the quark 
assignments to the basis vectors on S 3 lead to agreement with the empirical 
results because the quarks have color charge and nonzero mass. But the 
lepton assignments would be wrong because both leptons in a family do 
not possess zero mass. Apparently, nature has chosen an alternative way 
for the two lepton states to exist in R 3. The production of one massive 
lepton and one massless lepton in each family requires the breaking of the 
symmetry between the two massless states on S 2, with the result that the 
four total parameters defining the two particle states is reapportioned into 
a lepton with mass (three parameters) and a massless lepton with only one 
helicity state (one parameter). 

Whether this symmetry-breaking scenario is the real origin of the two 
observed lepton states remains an open question, but the proper lepton 
states are produced, one with mass and the other massless. Furthermore, 
this scenerio could possibly fit within the inherent symmetry-breaking 
behavior in the minimal Standard Model with or without a Higgs particle. 

If the suggested scenario is accepted, one has accessible now a possible 
resolution of the neutrino mass problem. With the electron state being 
massive and requiring three parameters, the one remaining parameter 
available for the neutrino state forces the neutrino in each lepton family to 
be massless and to possess only one helicity state. Indeed, the mathematical 
argument eliminates the possibility for neutrinos to acquire a nonzero mass 
by any mechanism. 

There is another important consequence of this symmetry breaking 
scenario. The existence of one massive lepton per family, the electron, for 
example, is the guarantee of charge-changing weak interactions for both 
the electron and the neutrino states with the W bosons, a process that 
would have been prohibited with only two massless lepton states because 
electric charge conservation would be violated. And, presumably, this 
fermion symmetry breaking happened simultaneously with the standard 
gauge symmetry breaking that produced the massive weak bosons. Then all 
the massless leptons produced before the symmetry breaking occurred 
would have intrinsic value in a residual way, for they should be excellent 
dark matter candidates because they can interact via the neutral current 
and gravitational interactions only! 

8. THE FINITE ROTATIONAL SUBGROUPS OF SU(2) x U(1)y 

The investigation into the geometrical properties of the unitary plane 
C 2 and its equivalent spaces R 4 and Q has already revealed that some of 
the known fundamental fermion properties are dictated very nicely by the 
geometry. For example, the mathematics strongly suggests that the lepton 
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states u and v in the unitary plane correspond to basis states that span the 
3D subspace R 3 and that the quark states correspond to the basis states 
that span the whole space R 4. But the geometrical picture remains incom- 
plete because we have yet to identify the origin of the different fermion 
families as well as the origin of the particle masses. 

There has been no easy path pointing directly to the origin of the 
particle families and their pairings into generations. Any model, including 
the minimal Standard Model, requires the pairing of quark families and 
lepton families so that the triangle anomalies cancel, as we have seen in an 
earlier section. Without additional knowledge beyond the minimal Stan- 
dard Model, one realizes that the quark-lepton family pairings can be made 
in several different ways and still satisfy the demands of the empirical 
results. For example, the (u, d) quark family could be paired with the 
~ ,  ~) family. And, most frustrating of all, there seem to be no obvious 
simple relationships among the particle masses to indicate the direction to 
pursue. 

I have determined that the key idea missing from the minimal Standard 
Model is the connection between the fundamental fermions and the finite 
rotational subgroups of SU(2) x U(1)r. This deliberate change in view- 
point from the continuous Lie groups to the finite rotational subgroups 
brings about a remarkable change in the understanding of the fundamental 
fermions within the general framework of the minimal Standard Model. 
One begins by considering the group SU(2) x U(1)r (without the L) and 
its isomorphism to the unit quaternion group Q that consists of all unit 
quatemions in R 4. In fact, one could better define Q in terms of its 
isomorphism (Altmann, 1986) to the group SU'(2) = SU(2) x C;, a form 
which explicitly shows the two-element inversion group C,. as a component. 
That is, Q and SU'(2) contain matrices of determinant + 1 and - 1. These 
group relationships hint that U(1)r will turn out to be isomorphic to Ct in 
the final complete model. 

The next step utilizes the finite subgroups of the quaternion group Q 
which are labeled (p,q,r)=(p,q, r)x Ci, where the (p,q,r) are the 
familiar proper rotation groups in R 3. Some properties of the finite 
subgroups (DuVal, 1964; Coxeter, 1974) of Q--Cn,  (p, 2, 2), (3, 3, 2), 
(4, 3, 2), and (5, 3, 2 ) - - a r e  listed in Table I. The standard names given 
for the last three finite subgroups correspond to their origins in terms of the 
rotational symmetries of specific 3D regular solids in R 3. With regard to 
the importance of these three groups in mathematics, a quote from a recent 
paper by Kostant (1984) reveals their true value: 

The ancient Greeks, especially the school of Plato, had great reverence for the 
regular polygons in the plane and regular solids in 3-space. The latter--the 
tetrahedron, cube, octahedron, dodecahedron, and the icosahedron--are often 
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Table I. Finite Subgroups of the Quatemiun Group Q 

Quaternion group Symbol Order 

Cyclic Cn n 
Dicyclic rxp, 2, 2) 4p 
Binary tetrahedral (3, 3, 2) 24 
Binary octahedral (4, 3, 2) 48 
Binary icosahedral (5, 3, 2) 120 
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referred to as the Platonic solids. The Greeks believed that these regular figures 
were fundamental in the structure of the universe. If symmetry or its mathemat- 
ical companion--group theory--is fundamental in the structure of the world, 
then one of the points of our lecture is the statement that the Greeks were 
absolutely right. That is, what we will be saying is that in a very profound way, 
the finite groups of symmetries in 3-space "see" the simple Lie groups (and 
hence literally Lie theory) in all dimensions. 

The rotations of the five familiar solid objects in R 3 listed by Kostant 
correspond to the operations in the three binary polyhedral groups 
(3, 3, 2), (4, 3, 2), and (5, 3, 2), i.e., the direct product of the subgroup 
(p, q, r) of proper rotations with the other half of the group consisting of 
improper rotations formed by a rotation from (p, q, r) followed by the 
inversion from Ct. The three binary polyhedral groups will be shown to 
correspond directly to the three families of leptons. 

In order to account for the quarks, one requires the finite rotational 
groups [p, q, r] in the whole space R 4. The four groups correspond (Cox- 
eter, 1974) to the rotations of the six 4D regular polytopes (p, q, r}. In 
Table II these groups are listed along with the 4D regular polytopes 
associated with the group. Five of the polytopes, the ones associated with 
groups [3, 3, 4], [3, 4, 3], and [3, 3, 5], have inversion symmetry and there- 
fore their groups are the direct product of the rotation group [p, q, r] + and 
the inversion group Ci. The 4D regular simplex {3, 3, 3} does not pos- 
sess inversion symmetry, so one must construct the direct product group 
with inversion symmetry [3, 3, 3]* = [3, 3, 3] + x C,., where [3, 3, 3] + is the 

Table II. The 4D Finite Rotation Groups and Their Regular Potytopes 

Regular polytope Symbol Order 

Self-dual regular simplex {3, 3, 3} [3, 3, 3]* 120 
16-cell {3, 3, 4} and 24-cell {4, 3, 3} [3, 3, 4] 384 
Self-dual 24-cell {3, 4, 3} [3, 4, 3] 1152 
600-call {3, 3, 5} and 120-cell {5, 3, 3} [3, 3, 5] 14400 
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normal rotation group of the 4D regular simplex. The four polytope groups 
will be shown to correspond directly to four quark families. 

The regular 4D and the 3D geometrical objects are related. These 4D 
regular polytopes {p, q, r} are built up traditionally by using the quater- 
nions in the binary polyhedral groups, and therein lies the intimate connec- 
tion among the groups representing the 3D and the 4D regular solids. The 
same connection will be the primary means for understanding the physical 
pairings among the lepton and quark families and will supply the mass 
ratios of all their particles. 

Examples of the more important connections include the 24 quater- 
nions in the binary tetrahedral group (3, 3, 2), which are partitioned into 
two parts: the 8 quaternions of (2, 2, 2), which are the vertices of {3, 3, 4}, 
and the remaining 16 quaternions, which make the {4, 3, 3}, the symmetries 
of both polytopes described by the group [3, 3, 4]. The whole group of 24 
quaternions in (3, 3, 2) are the 24 vertices of {3, 4, 3}, which corresponds 
to the group [3, 4, 3]. The 120 quaternions of (5, 3, 2) are the 120 vertices 
of {3, 3, 5}, which corresponds to [3, 3, 5], while a select subset of them 
make the regular simplex {3, 3, 3}. These relationships will reappear in a 
later section to help determine the invariant polynomial bases for the 4D 
groups. 

9. THE POLYNOMIAL BASIS AND THE MASS RATIOS 

The primary motivation for examining the finite rotational subgroups 
in R 3 and R 4 of the minimal Standard Model gauge group lies in the 
identification of the particle families and their mass spectrum. One knows 
that the mass must be an invariant under all operations of the internal 
symmetry group. However, the group can be continuous orfinite as long as 
it is "O(3)-like" in order to ensure (Wigner, 1939) invarianee under 
space-time transformations. All the selected finite rotational groups in R 3 
and R 4 will meet this relativistic requirement. 

Before proceeding to the pertinent properties of these finite rotational 
groups, I would like to mention a surprise twist that nature seems to have 
chosen. Even though I show that the finite rotational groups dictate the 
family structure, mathematicians would be strong proponents for the finite 
reflection groups in the two spaces R 3 and R 4 because reflections are more 
fundamental, i.e., rotations result from successive reflections. However, an 
investigation of the mathematical properties of both types of groups 
indicates that the finite rotational groups are the fundamental groups 
chosen by nature for the fermions, because one cannot reproduce the 
correct mass ratios with the reflection groups. If the leptons and quarks in 
the Standard Model should actually be composite entities, then the poten- 
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tial role of the finite reflection groups at the compositeness scale should be 
investigated. 

One begins with the polynomial basis for each finite rotation group 
and uses the invariant rational functions of these polynomials to determine 
the mass ratios. The derivation of the polynomials for the polyhedral 
groups can be examined in the references given (Klein, 1956; Sansone and 
Gerretsen, 1969). I will merely adopt the polynomials and the invariant 
flmctions in order to proceed directly toward determining the mass ratios. 
Therefore, I shall be using results that mathematicians have known since 
the late 1800s, that each of the finite 3D rotational groups possesses three 
invariant polynomials which are not all independent because they are 
related by a syzygy which expresses one of them in terms of the other two 
polynomials. The two independent polynomials for each finite rotation 
group then form a polynomial basis which can be written in terms of the 
u and v that span the unitary plane. 

Beginning with the binary polyhedral subgroups of Q, one learns that 
each finite binary polyhedral group (p, q, r )  has exactly two independent 
homogeneous polynomials w~ and w2 which are written (Klein, 1932, 1956; 
Sansone and Gerretsen, 1969) in terms of the two complex basis functions 
zl and z2 of CL (N.B~ One could use u and v here, but since they have been 
identified as the particle states, the discussion remains more general in 
terms of z~ and z2.) These two polynomials form an integrity basis, i.e., a 
polynomial basis, for each finite rotation group. In general, each n-dimen- 
sional representation for each group will have a different set of polynomials 
for the integrity basis (Patera et al., 1978; Cummins and Patera, 1988). The 
two-dimensional representations of the binary polyhedral groups in the 
unitary plane require two complex polynomials for the integrity basis. The 
polynomials w~ and w2 were originally determined in the 1800s for the 
binary polyhedral groups in C:, and each polynomial is an eigenfunction 
under the operations of the group with eigenvalues + 1 or - 1. They are 
usually presented in terms of the ratios w~/w2 as given in Table III. The 

Table HI. Invariant Ratios of the Independent Polynomials for the Finite Subgroups of Q 

Group Invariant ratio 

w I (z 4 - 2i,~f3z~z~ + z~) 3 
(3, 3, 2) - -  - 

�9 2 2  4 3  W2 (Z~ + 2t .~/Bzlz2 + z2) 

(4,  3, 3 )  4 4  4 4 4  w2 108zlz2(zl -z~) 
20 20 15 5 5 15 10 lO 3 w_s -{(z  I +z2 ) +228(z1 z 2 - z l z 2 )  -494z l  z2 } 

(5, 3, 2) 
w2 1728{z~ zz(z  I ~ + l l z~z~ - z~~ 5 
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constant numerical factors 1, 108, and 1728 in the denominators have been 
inserted to meet the mathematical requirements that are discussed in the 
next paragraph. These numerical factors will determine the mass ratios for 
the particles. 

An important operation of complex analysis maps the points on a 
z-sphere (divided into fundamental regions) to the corresponding points on 
a Riemann w-sphere (having many layers). The z-spheres for the binary 
polyhedral groups possess triangular fundamental regions. Defining z = zl / 
z2 and the rational function w = wl/w2, one finds that the mapping between 
the spheres is not unique, i.e., at least two different mappings are possible. 
Felix Klein investigated the pertinent mathematical properties of the map- 
pings in his famous book Vortesungen abet das Ikosaeder und die Auflrsing 
der Gleichungen yore f~nften Grade [originally published in 1884; for 
translation see Klein (1956)] in which he determines unique one-to-one 
mapping conditions. A different numerical constant N for each group must 
be included in the definition of w in order to ensure the unique mapping. 
This constant N arises naturally from the syzygy among the invariant 
polynomials. Recall that the value of N has already been included in the 
denominators of the ratios presented in Table III. The ratio w = w1/w2 is 
invariant under all linear transformations of each group and the mapping 
is unique with the corresponding values of N: 1, 108, 1728. 

The different N value for each group helps identify the lepton family 
hierarchy and determines the lepton mass ratios. The following argument 
to justify the connection of the N values to the mass ratios is incomplete, 
but it seems reasonable and agrees quite well with the empirical values. 
However, I would prefer to understand the details much better. Further 
investigation into the fundamental origins of mass "charge" is being 
continued. 

The argument supporting the connection of  the N's to the mass ratios 
relies upon the residues at the poles for the invariant rational functions 
w(z). Klein points out that the original complex parameter w (without the 
N included in the denominator) can be set equal to the absolute invariant 
J of elliptic modular functions (Sansone and Gerretsen, 1969). This abso- 
lute invariant J is expressed in terms of a modulus z, the ratio of two 
periods r and o2 on a lattice in the complex plane C. Defining q = e 2~t~, 
we have 

J(z) = (1/1728)[q-1 + ~ c(n)q"] (13) 

with the c(n) all integers (!) and the summation taken from zero to infinity. 
The important feature is that J(z) has a simple pole at q = 0. An integral 
of J(z) [or w(z)] around a closed path which surrounds the pole therefore 
equals a constant times the residue at the pole by Cauchy's residue 
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theorem. Such an integral would be required if one desired to determine the 
effects of a mass within a volume element acting on the outside world, and 
the calculation would proceed by applying "Gauss' law" for gravitation. 
The residue for J(z) gets multiplied by the appropriate value of N when the 
rational function w(z) is the integrand for each group. Thus, there exists a 
direct relationship between the constants N which will appear in the 
residues of the integral for particles in the different families of leptons and 
the gravitational effects on the surrounding environment of these particles. 
Therefore, the mass ratios will be proportional to the N ratios. 

Following the prescription, the values of N for the three binary 
polyhedral groups (3, 3, 2), (4, 3, 2), and (5, 3, 2) produce the mathemat- 
ical ratios 1:108: 1728. Directly comparing these ratio values to the mass 
ratios of the massive leptons 0.511:105.7:1784 (in MeV/c2), there is the 
same general pattern to the values. The neutrinos do not help here because 
they all have zero masses by the degree-of-freedom arguments discussed 
earlier. One is tempted to assign each lepton family to its own binary 
polyhedral group because the "mass ratios" look reasonable and are highly 
suggestive. Before such a leap can be made, however, one must be able to 
show that the quark masses can be determined in exactly the same manner 
when they are assigned to the regular polytope groups [p, q, 3] in R 4. 

10. QUARK MASS RATIOS AND FAMILY PAIRINGS 

The invariant polynomials for the 4D polytope groups [p, q, 3] are 
determined by "projecting" (Coxeter, 1974) each 4D polytope from R 4 to 
the unitary plane to make a complex polygon in C 2. Recall that the normal 
real regular polygon has n vertices on the circle S 1 in the real plane R 2 and 
n edges of equal length. The complex polygon in the unitary plane C 2 has 
at least two vertices along each edge and at least two edges at each vertex. 
The notation tells the facts: the complex polygon 3{q}4 has 3 vertices per 
edge and 4 edges per vertex, for example. In this notation the familiar real 
regular polygon would be written as 2{n}2. 

Projecting the regular polytope to the unitary plane allows one to look 
up the polynomials in a table, for according to Coxeter (1974), "all the 
self-reciprocal complex polygons have regular polytopes for their real 
counterparts." The regular polytopes for the last three of the four 4D 
polytope groups have corresponding self-reciprocal complex polygons 
p{q}p in the unitary plane, and the groups for these self-reciprocal com- 
plex polygons are subgroups of the polytope groups. Their polynomials 
listed in Table IV are the same polynomial invariants as the ones given for 
the three binary polyhedral groups already discussed in connection with the 
lepton families and therefore these three polytope groups possess the same 
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Table IV. lnvariant Polynomials for the 4D Rotation Groups [p, q, r] in Terms of the 
Polynomials wl and w2 for the Subgroups of Q as Determined via Projection to Complex 

Polygons p{q}p in the Unitary Plane a 

Group Polygon 
[p, q, r] Polytope subgroup Polynomials 

[3, 3, 4] {3, 3, 4} 3[3]3 wl, w 2 of (3, 3, 2) 
[3, 4, 3] {3, 4, 3} 4[3]4 wl, w 2 of (4, 3, 2) 
[3, 3, 51 {3, 3, 5} 51315 wl, w2 of (5, 3, 2) 

aFrom Coxeter (1974). 

constants N. This important connection could have been anticipated from 
the construction of the polytopes via the quaternions in the binary polyhe- 
dral groups. 

The remaining 4D regular polytope {3, 3, 3} has five vertices, which, 
when projected to the unitary plane, cannot be a self-reciprocal complex 
polygon because it has an odd number of vertices. In addition, the {3, 3, 3} 
does not possess inversion symmetry, so one must force a combination of 
this polytope with its dual polytope to achieve an object with ten vertices 
and inversion symmetry in order to possess the [3, 3, 3]* group properties. 
I have not yet conclusively identified the invariant polynomials for the 
group [3, 3, 3]*, but preliminary calculations indicate that the invariant 
polynomials will be associated with a combination of the groups (p, 2, 2) 
and (3, 3, 2). Should a combination of the dicyclic and tetrahedral groups 
be necessary for [3, 3, 3]*, this amalgam may be the source of the family 
mixing among the first two quark families. At the present stage, I will take 
N = 1/4, the value for (p, 2, 2), as a temporary value. 

The pertinent information determined by the mathematical analysis 
can be gathered together to guide the family pairings. The polynomial 
bases and the invariant rational functions w(z) for the finite rotational 
groups lead directly to these important physical consequences: 

1. The first quark family (u, d) based on [3, 3, 3]* is unpaired to a 
lepton family. 

2. The quark and lepton family pairings are (ve, e ) ~  (c,s), 
(v,,#) ~ (t, b), and (v~, ~ ) ~  (t', b') because the 4D groups 
[3, 3, 4], [3, 4, 3], and [3, 3, 5] are matched directly to the groups 
(3, 3, 2), (4, 3, 2), and (5, 3, 2), respectively. 

3. The mass ratios of the paired quark families follow the patterns for 
the mass ratios of the leptons. 

4. There are no more families of leptons or quarks because the present 
assignments have exhausted the supply of finite rotational sub- 
groups in R 3 and R 4. 
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One must predict three lepton families and four quark families to 
agree with the numbers of  groups in each real space. The mass values 
shown in Table V are obtained by using the ratios of  the N 's  and the family 
pairings that the finite rotational groups suggest. In each "mass  theory" 
column, the mass in brackets [ .  ] is taken as the reference mass for the 
whole column. Because no absolute reference scale for mass value exists, 
the use of  reference masses is the best one can do with the ratios. 

How well do the mass predictions fit the empirical values? For  the 
lepton families, the neutrino mass values are taken to be zero by the 
degrees-of-freedom argument applied in each family. The three massive 
lepton values are reasonably close to the actual values in MeV/c 2 units even 
though they range over three orders of  magnitude. The large percentage 
discrepancy for the electron mass is bothersome, and may indicate that 
there is more to the mass value determination than just the N ratios. Or 
perhaps the origin of  this particular problem lies with the tack of  inversion 
symmetry for the regular tetrahedron. The direct product group 
(3, 3, 2)  = (3, 3, 2) x Ci actually requires two tetrahedra, the original and 
its dual, to comply with the group properties. A factor of  two may appear  
here in the calculations for the mass ratio, but this avenue needs further 
investigation in order to be taken seriously. The important  lepton result is 
the prediction of  reasonable mass values. 

For  the quarks, one notices in Table V that the predicted up- and 
down-quark masses do not agree with the current mass values between 2 
and 9MeV/c  2 normally used. In particular, the large up-quark mass 

Table V. The Family Pairings for Leptons and Quarks and the Mass Values Predicted by the 
Finite Rotational Group Scheme ~ 

Lepton families Quark families 

Mass Mass Mass Mass 
N Lepton theory, known, Quark theory, known, 

value Group flavor MeV/c 2 MeV/c 2 Group flavor GeV/c 2 GeV/c 2 

1/4 None [3, 3, 3]* u 0.38 0.004 
d 0.011 0.007 

1 (3 ,  3, 2 )  v~ 0 < 10 - 5  [4, 3, 31 c [1.5] 1.5 
e [ 1.0] 0.511 s 0.046 0.2 

108 (4,3,2) v u 0 <I [3,4,3] t 160 >91 
108 I05.7 b [51 5 

1728 (5, 3, 2) v~ 0 < 35 [5, 3, 3] t' 2600 ? 
r 1728 1784 b' 80 ? 

aMass values in brackets are taken as reference values. 
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predicted to be about 380 MeV/c: is close to being about one-third the 
proton mass. These discrepancies will need explanation eventually. A good 
understanding of the origin of quark mixing might be able to resolve these 
problems, including the predicted strange quark mass of 46 MeV/c 2, which 
is quite low compared to mass values above 100 MeV/c 2 normally used. 

Because the charm and bottom quark masses are taken as references, 
only three quark mass values remain to be predicted. The predicted top 
quark mass at about 160 GeV/c 2 is within the remaining allowable range 
according to empirical search results. The predicted masses that I consider 
exciting are the fourth quark family b' quark mass value at about 80 GeV/ 
c 2 and the t' quark mass at a whopping 2600 GeV/c2! The b' should have 
been produced already at Fermilab, while the t' will be just within the 
maximum reach of the available energy of the Superconducting Supercol- 
lider. If the b' does not exist near 80 GeV/c 2, one can dismiss the finite 
rotational group modification of the Standard Model as not correct. 

11. CHARGE RELATIONSHIPS 

Different types of charges characterize the interactions of the funda- 
mental fermions, and each type of charge has been related to rotations in 
the different spaces. I have determined the mass "charge" values with the 
help of the invariant polynomials and their rational functions w associated 
with the rotations of the finite rotational groups in R 3 and R 4. And I have 
assigned the three values of color charge to the three pairs of orthogonal 
planes for general 4D rotations. The weak charge was assigned by the 
Standard Model to the basis states in the unitary plane where the weak 
interaction rotates the fundamental fermion particle states. One would 
expect a unified unique connection among these types of charges. 

As a first step toward a unified expression, we can improve on the 
standard "empirical" assignment of weak hypercharge values for the leptons 
and the quarks by exploiting the close connection of Y to the inversion 
element I of the group Ci in the normal spinor space and the conjugate 
spinor space. Instead of assigning Y eigenvalues to make the electric charge 
values match the empirical results, one can utilize the isomorphism between 
SU(2) x U(1)r and SU'(2) = SU(2) x Ci to assign all leptons and quarks 
the same weak hypercharge eigenvalue, the eigenvalue of the inversion 
operator I in each spinor space (Altmann, 1986). For (u, v] the eigenvalue 
of I is - 1 ,  so the particles should have the eigenvalue Y = -  1; for 
antiparticles in (v*, - u *  l, their eigenvalue is Y = + 1. 

Second, we can incorporate the color "eigenvalues" into an expression 
for the electric charge values. Because the Standard Model group 
SU(3)c x SU(2)L x U(1)r has three components, the expression for the 
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electric charge could be a relationship having three components, one 
representing each group component. Notice that the mass "charge" will not 
contribute, because it is not the eigenvalue of a Lie group generator in the 
gauge group. In the standard basis, SU(3) has (Renton, 1990) the two 
diagonal generators Tz and Yc. For T~ = 0, there are only three allowed 
values of Yc: O, + 2/3, -2/3.  I propose to use these three values of Yc in 
an expression for the electric charge Qe of the lepton and quark particle 
states: 

Qe = T3+ Y/2+ Yc (14) 

where T3 is the SU(2) weak isospin eigenvalue, Y is the weak hypercharge 
(i.e., inversion operator) eigenvalue, and Yc is the eigenvalue for the 
SU(3)c generator. Using Yc = 0 for leptons and antileptons, +2/3 for 
quarks, and -2 /3  for antiquarks, all fundamental fermions will have the 
correct electrical charge values via equation (14). A more fundamental 
geometrical understanding of this simple connection among the charges in 
terms of the rotations involved will be reported in another article. 

12. SYMMETRY BREAKING 

Symmetry breaking and gauge fields are essential components of the 
minimal Standard Model. With the Lie groups in SU(3)c x SU(2)L x 
U(1)r, spontaneous symmetry breaking is done via the Higgs mechanism 
or by dynamical methods. But the Higgs boson tbr the minimal model has 
not been produced in the experiments and can be ruled out for energies less 
than about 90 GeV. Dynamical symmetry breaking without a Higgs-type 
particle may be able to rescue the process, but the results are inconclusive. 

A third method of symmetry breaking is possible. If the spontaneously 
broken symmetry is discrete--and this is the case for the finite rotation 
group modification of the Standard Model--there are no Goldstone 
bosons to be eliminated by the Higgs mechanism (Coleman, 1985). Each 
finite rotational subgroup of SU(2) x U(1)y has four generators which 
behave in the same general way as the four generators of the parent gauge 
group of the Standard Model. The symmetry breaking reproduces the 
massive W and Z ~ and all the relations of the Glashow-Weinberg-Salam 
theory still hold true. One simply adopts the mathematical machinery of 
the Standard Model to produce the same physical characteristics for the 
etectroweak connection. 

In order to verify these statements made about the discrete case 
producing the same symmetry-breaking results as the minimal Standard 
Model (but without the Higgs boson), one would need to examine carefully 
the symmetry-breaking process for the finite rotational groups. Ideally, 
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there will be no conflicts with known theoretical and experimental results. 
A detailed examination is being conducted and will be reported elsewhere. 

13. FINAL COMMENTS 

The minimal Standard Model has achieved remarkable success in 
explaining most of the physical behavior of leptons and quarks. The 
present examination of the geometrical basis has confirmed its robust 
character. I have examined some of its geometrical properties in three 
different equivalent internal symmetry spaces--C ~, Q, and R 4 -  and have 
uncovered a great variety of interesting relationships which seem to have 
been adopted by nature for the leptons and quarks. With the help of its 
finite rotational subgroups, one can explain the origin of (a) the left- 
handed preference of the weak interaction, (b) color symmetry, (c) the 
distinction between leptons and quarks, (d) zero neutrino masses, (e) the 
family hierarchy predicting three lepton families and four quark families 
and their pairings, (f) the ratios of the particle masses, and (g) the discrete 
symmetry breaking. The present investigation has brought about a refresh- 
ingly different appreciation for the robustness of the minimal Standard 
Model as well as some insight into the actual geometrical framework in 
which nature has built the particle world. Much additional theoretical work 
needs to be done in order to understand better the connection of leptons 
and quarks to the finite rotation groups, to elucidate the important details 
essential for understanding the various charges of the particles, and to 
examine the discrete symmetry breaking. The acid test, however, remains 
the production of the b' quark that the modified Standard Model predicts 
at about 80 GeV/c 2, which would be compelling evidence for the existence 
of the finite rotational groups at the heart of particle physics. 
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